Online Learning Platform

Data Analysis Using Python > Data Processing > Recoding using Label Encoder

Label Encoding

Label encoding is a data preprocessing technique used to convert categorical data into numeric form so that machine learning algorithms can process it.

For example:

Color

Encoded

Red

0

Green

1

Blue

2

So, "Red" → 0, "Green" → 1, "Blue" → 2

Example:

from sklearn.preprocessing import LabelEncoder

import pandas as pd

df = pd.DataFrame({

    'City': ['Dhaka', 'Rajshai', 'Khulna', 'Chattogram', 'Barishal', 'Cumilla']

})

df

0

Dhaka

1

Rajshai

2

Khulna

3

Chattogram

4

Barishal

5

Cumilla

 

# Creating a LabelEncoder object

encoder = LabelEncoder()

df['City_enc'] = encoder.fit_transform(df['City'])

 

City

City_enc

0

Dhaka

3

1

Rajshai

5

2

Khulna

4

3

Chattogram

1

4

Barishal

0

5

Cumilla

2

 

Prev
Recoding using One-Hot Encoding

No More

Feedback
ABOUT

Statlearner


Statlearner STUDY

Statlearner